

This article was downloaded by:

On: 25 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Separation Science and Technology

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713708471>

Distillation vs. Chromatography: A Comparison Based on the Purity Index

C. E. Cloete^a; K. De Clerk^a

^a CHROMATOGRAPHIC RESEARCH UNIT OF THE SOUTH AFRICAN COUNCIL FOR SCIENTIFIC AND INDUSTRIAL RESEARCH DEPARTMENT OF PHYSICAL AND THEORETICAL, CHEMISTRY UNIVERSITY OF PRETORIA PRETORIA, REPUBLIC OF SOUTH AFRICA

To cite this Article Cloete, C. E. and De Clerk, K.(1972) 'Distillation vs. Chromatography: A Comparison Based on the Purity Index', *Separation Science and Technology*, 7: 4, 449 — 455

To link to this Article: DOI: 10.1080/00372367208055588

URL: <http://dx.doi.org/10.1080/00372367208055588>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

NOTE

**Distillation vs. Chromatography: A Comparison
Based on the Purity Index**

C. E. CLOETE and K. DE CLERK

CHROMATOGRAPHIC RESEARCH UNIT OF THE SOUTH AFRICAN
COUNCIL FOR SCIENTIFIC AND INDUSTRIAL RESEARCH
DEPARTMENT OF PHYSICAL AND THEORETICAL CHEMISTRY
UNIVERSITY OF PRETORIA
PRETORIA, REPUBLIC OF SOUTH AFRICA

Abstract

The ratio of the number of theoretical distillation plates to chromatographic plates needed to achieve the same separation is shown to depend on the proposed purity index I , the relative volatility α , and k_1 , the mass distribution coefficient of component 1.

Rony (1) recently compared distillation and chromatography in terms of his extent of separation (2). A more general measure of separation, based on the entropy of separation, has since been proposed (3). This measure, termed the purity index I , will be used in the present note as the basis of a comparison of the analytical efficiencies of distillation and chromatography, and it will be shown to differ significantly from Rony's results in that it shows a marked dependence on the mass distribution coefficient.

The purity index I is defined by

$$I = -0.25 \log \eta_1 \eta_2 \quad (1)$$

where η_i is the impurity ratio (4) for the i th component. Since (see

449

Copyright © 1972 by Marcel Dekker, Inc. *NO PART of this work may be reproduced or utilized in any form or by any means*, electronic or mechanical, including xerography, photocopying, microfilm, and recording, or by any information storage and retrieval system, without the written permission of the publisher.

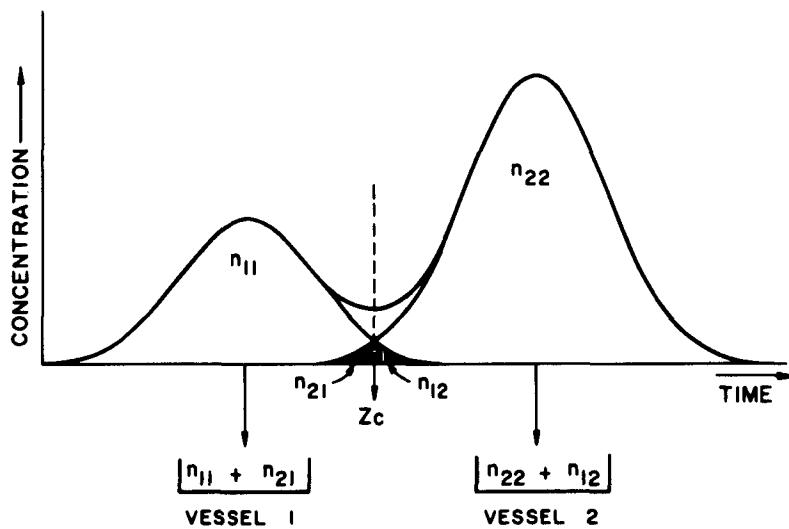


FIG. 1. Illustration of fraction separation in relation to cutpoint z_c .

Fig. 1)

$$\eta_1 = n_{21}/n_{11} \quad (2)$$

and

$$\eta_2 = n_{12}/n_{22} \quad (3)$$

the purity index I for a single binary equilibrium stage is obtained as

$$I_{ss} = -0.25 \log \frac{n_{21} n_{12}}{n_{22} n_{11}} \quad (4)$$

$$= 0.25 \log k_2/k_1 \quad (5)$$

$$= 0.25 \log \alpha \quad (6)$$

where α is the relative volatility.

Consider the countercurrent multistage system shown in Fig. 2. The stages are numbered in the direction of flow of Component 1; for distillation Component 1 will be the more volatile and Component 2 the less volatile component.

Analogous to Rony's use of Klinkenberg's (5) procedure for obtaining the conservation-of-mass equations, the material balances and equilibrium conditions yield the following expression for the general case of

partial reflux

$$I_d \text{ partial reflux} = -0.25 \log \frac{[(k_2^m - 1) + (r_w/r_{w+1})(k_2 - k_2^m)]}{[(k_1^m - 1) + (r_w/r_{w+1})(k_1 - k_1^m)]} \times \frac{(k_1^m - k_1^{n+m}) + (r_e/r_{e+1})(k_1^{n+m-1} - k_1^m)}{(k_2^m - k_2^{n+m}) + (r_e/r_{e+1})(k_2^{n+m-1} - k_2^m)} \quad (7)$$

The reflux ratios r for the extraction section and washing section are defined by

$$\frac{r_e + 1}{r_e} = \frac{n_{11}(n + m - 1)}{n_{12}(n + m)} \quad (8)$$

and

$$\frac{r_w + 1}{r_w} = \frac{n_{12}(1)}{n_{11}(0)} \quad (9)$$

respectively.

At total reflux ($r_e = r_w = 0$) and equal numbers of washing and extraction stages ($n = m$), Eq. (7) reduces to

$$I_d \text{ total reflux} = 0.25(2n - 1) \log \alpha \quad (10)$$

For no reflux ($r_e = r_w = 0$) and $n = m$, I_d no reflux is obtained as

$$I_d \text{ no reflux} = 0.25n \log \alpha \quad (11)$$

The elution curve in linear chromatography is given by the Gaussian distribution

$$C_i(z, t) = \frac{m_i}{(2\pi)^{1/2}\sigma_i} \exp \left[-\frac{(z - z_i)^2}{2\sigma_i^2} \right] \quad (12)$$

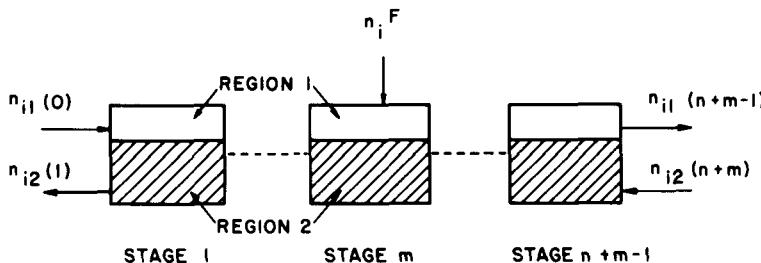


FIG. 2. Definition of terms for a countercurrent multistage system.

where C_i = concentration of i th component, z = axial distance coordinate, z_i = position of distribution mean of i th component, m_i = area of peak, and σ_i = standard deviation of the i th peak.

The impurity fractions η_1 and η_2 then follow as

$$\eta_1 = \frac{m_2[1 - \operatorname{erf}(Z_2/\sqrt{2})]}{m_1[1 + \operatorname{erf}(Z_1/\sqrt{2})]} \quad (13)$$

and

$$\eta_2 = \frac{m_1[1 - \operatorname{erf}(Z_1/\sqrt{2})]}{m_2[1 + \operatorname{erf}(Z_2/\sqrt{2})]} \quad (14)$$

where

$$Z_1 = \frac{z_c - z_1}{\sigma_1} \quad (15)$$

and

$$Z_2 = \frac{z_2 - z_c}{\sigma_2} \quad (16)$$

It has not been possible to determine an analytical expression for the cut point z_c which would maximize the purity function I , and a numerical analysis appears to be indicated. For the present purpose, however, it is deemed sufficient to determine z_c from a simpler condition which promises at least qualitative agreement with the above requirement, viz., that cut point which yields equal impurity fractions for both regions, i.e.,

$$\eta_1 = \eta_2 \quad (17)$$

The extent of separation I_c can then be written as

$$I_c = -0.5 \log \frac{\{1 - \operatorname{erf}[z_2 - z_1/\sigma(8)^{1/2}]\}}{\{1 + \operatorname{erf}[z_2 - z_1/\sigma(8)^{1/2}]\}}. \quad (18)$$

The dimensionless parameter $(z_2 - z_1)/\sigma(8)^{1/2}$ can be written more conveniently in terms of time units as (6)

$$\frac{z_2 - z_1}{\sigma(8)^{1/2}} = \frac{t_2 - t_1}{\sigma_{t_1}(8)^{1/2}} \quad (19)$$

where t_1 and t_2 are the retention times of the two components and σ_{t_1} the standard deviation of component, measured in time units.

From the relations

$$t_i = l(1 + k_i)/u \quad (20)$$

$$\sigma_{t_i} = \sigma_i(1 + k_i)/u, \quad (21)$$

$$H_c = \sigma_1^2/l \quad (22)$$

and

$$N_c = l/H_c \quad (23)$$

it follows that

$$I_c = -0.5 \log \frac{[1 - \operatorname{erf} (N_c/8)^{1/2}][(\alpha - 1)k_1/(1 + k_1)]}{[1 + \operatorname{erf} (N_c/8)^{1/2}][(\alpha - 1)k_1/(1 + k_1)]} \quad (24)$$

For close separations, i.e., α close to unity,

$$\operatorname{erf} \left(\frac{N_c}{8} \right)^{1/2} \frac{(\alpha - 1)k_1}{(1 + k_1)} \sim \left(\frac{N_c}{2\pi} \right)^{1/2} \frac{(\alpha - 1)k_1}{(1 + k_1)} \quad (25)$$

since (7)

$$\operatorname{erf} x \xrightarrow[0]{x} \frac{2x}{(\pi)^{1/2}} \quad (26)$$

Equation (24) becomes

$$I_c = -0.5 \left[\log \left\{ 1 - \left(\frac{N_c}{2\pi} \right)^{1/2} \frac{(\alpha - 1)k_1}{(1 + k_1)} \right\} - \log \left\{ 1 + \left(\frac{N_c}{2\pi} \right)^{1/2} \frac{(\alpha - 1)k_1}{(1 + k_1)} \right\} \right] \quad (27)$$

By using the approximation $\ln x \sim x - 1$ for $x \sim 1$, Eq. (27) reduces to

$$I_c = \frac{1}{2.303} \left(\frac{N_c}{2\pi} \right)^{1/2} \frac{(\alpha - 1)k_1}{(1 + k_1)} \quad (28)$$

To the same approximation Eqs. (11) and (10) become, respectively,

$$I_d \text{ no reflux} = \frac{0.25}{2.303} n(\alpha - 1) \quad (29)$$

and

$$I_d \text{ total reflux} = \frac{0.25}{2.303} (2n - 1)(\alpha - 1) \quad (30)$$

Equations (28), (29), and (30) now make possible the comparison of chromatography and distillation for the case where the purity index I is taken as a measure of the analytical efficiency. For analytical purposes, yield is, per definition, of trivial importance, and the appropriate index for distillation would therefore be the one which corresponds to maximum analytical efficiency, viz., I_d total reflux.

The ratio of the number of theoretical distillation plates N_d to chromatographic plates N_c needed to effect a separation with the same efficiency I is given by

$$\frac{N_d}{N_c} = \frac{2(\alpha - 1)}{2.303I\pi} \left(\frac{k_1}{1 + k_1} \right)^2 \quad (31)$$

for $N_d = 2n$ ($n = m, n \gg 1$).

It is apparent from Eq. (31) that the ratio N_d/N_c depends on I , α , and k_1 . An important difference from Rony's results is noted in the marked dependence of N_d/N_c on k_1 . This causes the ratio to vary by a factor 4 as k_1 varies from $k_1 = 1$ to $k_1 \gg 1$, and shows that large errors can be incurred in the calculation of the number of theoretical chromatographic plates equivalent to a given number of distillation plates, and vice versa, if this dependence is not taken into account.

SYMBOLS

α	relative volatility
C_i	concentration of i th component
η_i	impurity ratio for i th component
H_c	height equivalent to a theoretical plate in chromatography
I	purity index
k_i	mass distribution coefficient of component i
l	column height in chromatography
m	number of stages in extraction section
m_i	area of chromatographic peak of component i
n	number of stages in washing section
n_{ij}	number of moles of species i in region
N_d	plate number in distillation
N_c	plate number in chromatography
r_e	reflux ratio for extraction section
r_w	reflux ratio for washing section
σ_i	standard deviation of i th peak

σ_{t_i} standard deviation of component i in time units
 t_i retention time of component i
 z axial distance coordinate
 z_c position of cutpoint
 z_i position of distribution mean of i th component

Acknowledgments

One of us (C.E.C.) gratefully acknowledges financial assistance in the form of a bursary by the Industrial Development Corporation of South Africa.

REFERENCES

1. P. R. Rony, *Separ. Sci.*, 5, 121 (1970).
2. P. R. Rony, *Separ. Sci.*, 3, 239 (1968).
3. K. de Clerk and C. E. Cloete, *Separ. Sci.*, 6, 627 (1971).
4. E. Glueckauf, *Trans. Faraday Soc.*, 51, 34 (1955).
5. A. Klinkenberg, *Chem. Eng. Sci.*, 1, 86 (1951).
6. K. de Clerk, "Contribution to the Theory of Chromatography," D.Sc. Thesis, University of Pretoria, Pretoria, South Africa, 1966.
7. H. B. Dwight, *Tables of Integrals and Other Mathematical Data*, 4th ed., Macmillan, New York, 1961, p. 136. *

Received by editor December 6, 1971